SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis.

نویسندگان

  • Marcia C Haigis
  • Chu-Xia Deng
  • Lydia W S Finley
  • Hyun-Seok Kim
  • David Gius
چکیده

Tumors exhibit metabolic reprogramming characterized by increased cellular reactive oxygen species (ROS) and the preferential use of glucose, which is known as the Warburg effect. However, the mechanisms by which these processes are linked remain largely elusive. Murine tumors lacking Sirt3 exhibit abnormally high levels of ROS that directly induce genomic instability and increase hypoxia-inducible factor 1α (HIF-1α) protein levels. The subsequent transcription of HIFα-dependent target genes results in cellular metabolic reprogramming and increased cellular glucose consumption. In addition, agents that scavenge ROS or reverse the Warburg effect prevent the transformation and malignant phenotype observed in cells lacking Sirt3. Thus, mice lacking Sirt3 provide a model that mechanistically connects aberrant ROS, the Warburg effect, and carcinogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sirt3, Mitochondrial ROS, Ageing, and Carcinogenesis

One fundamental observation in cancer etiology is that the rate of malignancies in any mammalian population increases exponentially as a function of age, suggesting a mechanistic link between the cellular processes governing longevity and carcinogenesis. In addition, it is well established that aberrations in mitochondrial metabolism, as measured by increased reactive oxygen species (ROS), are ...

متن کامل

SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis

It is a well-established scientific observation that mammalian cells contain fidelity proteins that appear to protect against and adapt to various forms of endogenous and exogenous cellular conditions. Loss of function or genetic mutation of these fidelity proteins has also been shown to create a cellular environment that is permissive for the development of tumors, suggesting that these protei...

متن کامل

The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation.

The Warburg effect is a tumorigenic metabolic adaptation process characterized by augmented aerobic glycolysis, which enhances cellular bioenergetics. In normal cells, energy homeostasis is controlled by AMPK; however, its role in cancer is not understood, as both AMPK-dependent tumor-promoting and -inhibiting functions were reported. Upon stress, energy levels are maintained by increased mitoc...

متن کامل

SIRT3: Oncogene and Tumor Suppressor in Cancer

Sirtuin 3 (SIRT3), the major deacetylase in mitochondria, plays a crucial role in modulating oxygen reactive species (ROS) and limiting the oxidative damage in cellular components. SIRT3 targets different enzymes which regulate mitochondrial metabolism and participate in ROS detoxification, such as the complexes of the respiratory chain, the isocitrate dehydrogenase, or the manganese superoxide...

متن کامل

Regulation of SIRT3 signal related metabolic reprogramming in gastric cancer by Helicobacter pylori oncoprotein CagA

Injection of the Helicobacter pylori cytotoxin-associated gene A (CagA) is closely associated with the development of chronic gastritis and gastric cancer. Individuals infected with H. pylori possessing the CagA protein produce more reactive oxygen species (ROS) and show an increased risk of developing gastric cancer. Sirtuins (SIRTs) are nicotinamide adenine dinucleotide (NAD+)-dependent deace...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 72 10  شماره 

صفحات  -

تاریخ انتشار 2012